CSE 114A: Fall 2021

Foundations of Programming
Languages

Lecture 1: Course Overview

Owen Arden
UC Santa Cruz

A Programming Language

e Two variables

— %,y Ll: x++;

e Three operations Y=
- x++ (y=0)?L2:L1
- X~ L2: ..

- (x=0)7? L1:L2;

Fact: This is “equivalent to” to every PL!

Good luck writing quicksort
... or Windows, Google, Spotify!

5o why study PL ?

Programming language
shapes
Programming thought

5o why study PL ?

Language affects how:
* |deas are expressed
» Computation is expressed

Course Goals

T

-Morpheus

Free your mind”

Learn New Languages/Constructs

New ways to:
- describe
- organize
- think about
computation

oal: Enable you to Program

Lorenzo da Ponte
Eoglish version by
Ruth and Thomas Martin Wolfgang Amadeus Mozart
Overture

Andante

e Readable

e Correct

e Extendable
e Modifiable
e Reusable

Learn How To Learn

Goal: How to learn new PLs

No Java (C#) 15 (10) years ago
AJAX? Python? Ruby? Erlang? F#?...

Learn the anatomy of a PL
 Fundamental building blocks
e Different guises in different PLs

Re-learn the PLs you already know

10

Goal: How to design new PLs

‘who, me ?”

Buried in every extensible system is a PL
e Emacs, Android: Lisp

« Word, Powerpoint: Macros, VBScript

e Unreal: UnrealScript (Game Scripting)
o Facebook: FBML, FBJS

e SQL, Renderman, LaTeX, XML ...

12

Enables you to choose right PL

“...but isn’t that decided by
e libraries,

e standards,

e and my boss ?”
Yes.

My goal: educate tomorrow’s tech leaders
& bosses, so you’ll make informed choices

Speaking of Right and Wrong...

Imperative
Programming

X = X+1

Imperative = Mutation

Imperative = Mutation

@&'

Don’t take my word for it

John Carmack
Creator of FPS: Doom, Quake,...

~

,§‘* John Carmack ¥ Follow A~
ﬁ ID AA Carmack

I am starting to remove op= operator overloads to
discourage variable mutation.

gEgTWEETS ‘F'/E/ORITES E @ / q m . é? ﬁ

2:55 PM - 28 Feb 12 via web - Embed this Tweet
4~ Reply T3 Retweeted W Favorite

Don’t take my word for it

Tim Sweeney (Epic, Creator of UNREAL)

“In a concurrent world,
imperative is the wrong default”

‘\ ~ [y \ 1 .
S\) A
3 - NN
TNARY

- " : /"~';‘_,
e =t i

AL 7 > sk Db e e
'GEARSo-\WAR \

=

Functional
Programming

Functional Programming ?

No Assignment.
No Mutation.
No Loops.

OMG! Who uses FP?!

So, Who Uses FP ?

GO _\ /gle

MapReduce

So, Who Uses FP ?

AY_)
AP

W

Micresoft
Linq, F#

So, Who Uses FP ?

Erlang

So, Who Uses FP ?

So, Who Uses FP ?

Wall Street
(all of the above)

...CSE 116

Course Mechanics and
Logistics

Logistics

Course website:
https://ucsc-cse-114a.github.io/fall21/

Resources

Course texts (optional):

An Introduction to Functional Programming Through Lambda Calculus by Greg
Michaelson. Free pre-print.

Thinking Functionally with Haskell by Richard Bird. Available online (free via library).

Programming in Haskell (2nd ed.) by Graham Hutton.

Real World Haskell by Bryan O’Sullivan. Available online (free via library).

Learn You a Haskell for Great Good by Miran Lipovaca. Available free online

Write You a Haskell by Stephen Diehl. (incomplete, but useful) Available free online

33

https://www.semanticscholar.org/paper/An-introduction-to-functional-programming-through-Michaelson/0331d73f1b694c0a97eaeaa6efff9be3b6c2a4e8
https://ucsc.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma991024922807004876&context=L&vid=01CDL_SCR_INST:USCS&search_scope=MyInst_and_CI&tab=Everything&lang=en
https://ucsc.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma991024922807004876&context=L&vid=01CDL_SCR_INST:USCS&search_scope=MyInst_and_CI&tab=Everything&lang=en
http://learnyouahaskell.com/
http://dev.stephendiehl.com/fun/

Resources

Haskell Dev Container

Local OS Container

=—__ ==
VS Code Server File System

Workspace Extension Terminal Processes
Running Application
Workspace Extension

VS Code

Theme/Ul Extension

Theme/Ul Extension

e ——

- https://github.com/UCSC-CSE-114A/cs114a-devcontainer

https://github.com/UCSC-CSE-114A/cs114a-devcontainer

Recommended IDE: VS Code

e New this year, legit IDE setup for Haskell!

- Devcontainer: A Haskell dev environment is
built in a container and VS Code
automatically mounts the container volume

- Also some integrations with Git and GitHub
Classroom

35

GITHUB

CLASSROOMS

not_false
and_false_true
or_true_false 5 points
suc_one 10 p

+ add_one_zero 10 points
add_one_two 10
skip1_false 1
skip1_true_zero 10 pc
skip1_true_one 1
decr_zero ¢
decr_one 5 p
decr_two & point

sub_two_zero 5 ¢
sub_two_one 5 point
sub_two_two 5 points
sub_two_three 5
isz_zero

isz_one &
eq_zero_zero 5
eq_zero_one 5§
eq_one_two 5 point
€q_two_two 5 points

PULL REQUESTS

Local Pull Request Branches
Waiting For My Review
Assigned To Me
Created By Me
All Open
v #1: Feedback by @gitt
Description

ISSUES
My Issues
Created Issues

> Dev Container: Haskell (Community)

&

®0AO0

0 § owenarden &Y 4> Live Share 9 Pull Request#1 -- NORMAL

0-owenarden [Dev Container: Haskell (Community)]
Mainhs X

Main.hs

check
check f x = do
r <= runElsald (testDir </> f) x
return (r = Just (0K (Bind x ())))

testDir
testDir

runTests
runTests groups
sc <~ initScore
defaultMainWithIngredients (includingOptions coreOptions : defaultIngredients)
(tests sc groups) ‘catch’ (\(e :: -
(n, tot) <- readIORef sc
putStrLn (“OVERALL SCORE = " ++ show n ++ " / "++ show tot)
throwI0 e)

tests - [
tests x gs = testGroup

scoreTest'
1 (b, Eq b) > (a->10b) >a->b->
scoreTest' sc f x expR points name =
testCase name $ do
updateTotal sc points
actR <- f x
if actR == expR
then updateCurrent sc points
assertFailure q

updateTotal :: [§]
updateTotal sc n = modifyIORef sc (\(x, y) => (x, y + n))

updateCurrent 0
updateCurrent sc n = modifyIORef sc (\(x, y) -> (x + n, y))

initScore
initScore = newIORef (@, 0)

Ln1,Col1 Spaces:4 UTF-8 LF Haskell

A

36

Main.hs — hwO-owenarden [Dev Container: Haskell (Community)]
RUN AND DEBUG D> haskell(stack) w quest > 2 ¥ T9o0 Main.hs X

 VARIABLES Main.hs runTests

~ GHCi Local eq_two_two

mkTest :: (b, Eg b) => (a > 10 b) ->a -> b ->
t mkTest = scoreTest' sc
> GHCi Global
NS
&

check ::

check f x = do
r <= runElsald (testDir </> f) x
return (r = Just (0K (Bind x ())))

List :: a —> [a] -> [a]

runTests :: [-
runTests groups = do
sc <- initScore
defaultMainWithIngredients (includingOptions coreOptions : defaultIngredients)
(tests sc groups) “catch’ (\(e ::) - do
(n, tot) <- readIORef sc
putsStrin (D "OVERALL SCORE = " ++ show n ++ " / "++ show toff)
throwI0 e)

tests i = 1 == 1 ->
tests x gs = testGroup "Te [gx|g<gs]

DEBUG CONSOLE e.g. text, lexclude]

CALL STACK PAUSED ON STEP
Main.runTests Main.hs 18317
runTests 1837
runTests 182:19
runTests 181:52
runTests 1818
runTests 180:31
runTests 180:31
runTests 180:3
runTests 180:3
initScore 21013
runTests 179:9
runTests 17819

main 78

BREAKPOINTS
¥ Main.hs 18031 >
5 Dev Container: Haskell (Community) 9 main* & @O0A0 %0 & haskell(stack) (hwo-owenarden) ¢ owenarden &7 4 Live Share 33 Pull Request#1 --VISUAL-- o Ln 183, Col 65 (48 selected) Spaces:4 UTF-8 LF Haskell 2 (%

Peer Instruction (ish)

Peer Instruction

e Make class interactive
- Help YOU and ME understand whats tricky

e Respond to in-class quizzes
- 5% of your grade
- Respond to 75% questions

e Bring laptop/phone if you have one

In Class Exercises

1. Solo Vote: Think for yourself, select answer

2. Discuss: Analyze Problem with neighbors
® Practice analyzing, talking about tricky notions
® Reach consensus
e Have questions, raise your hand!

3. Group Vote: Everyone in group votes

4. Class-wide Discussion:
e What did you find easy/hard?
® (Questions from here show up in exams

In Class Exercises

Let’s try it out (if you have a device):

Indoctrination (a test)

http://tiny.cc/cse116-trial

Make your individual choice

In Class Exercises

Let’s try it out (if you have a device):

Indoctrination (a test)

http://tiny.cc/cse116-trial

Now “confer” with a neighbor and
agree on a choice for your group

Requirements and Grading

In-Class Exercises: 5%
Midterm: 30%
Programming Assignments (6): 30%
Final: 35%

Two hints/rumors:

1.

Lots of work

2. Don’t worry (too much) about grade

Note: Regrades must be requested within two

weeks of receiving grade

Resources

e Online lecture notes
 Readings and exercises

e Webcasts:

- User: cse-116-1
- Pass: lambda

« Pay attention to lecture and section!
e Do assignments yourself (+partner)!

Ask for help!

« Lots of help available, will be adding
more soon. (watch website)

e Lab sessions 4 days/wk with tutors to
help with assignments

e Discussion sections with TAs to help
with lecture concepts

45

Programming Assignments

All assignments are managed through GitHub
Classroom (link on course page).

- You must push your submitted code.

Deadline Extension:
- Four “late days”, used as “whole unit”
- 5 mins late = 1 late day
- Plan ahead, no other extensions

See course webpage for HW deadlines

Programming Assignments

Unfamiliar languages
+ Unfamiliar environments

Start Early!

Weekly Programming Assignments

Scoring = Test suite

No Compile, No Score

Weekly Programming Assignments

Forget Java, C, C++ ...
... other 20th century PLs

Don’t complain
... that Haskell is hard
... that Haskell is @!%@#

Immerse yourself in new language

It 1s not.

Immerse yourself in new language

FREE YOUR MIND

Word from our sponsor ...

e Programming Assignments done ALONE or
in (official) groups of two (as permitted)

e« We use plagiarism detection software
- MOSS is fantastic, plagiarize at your own risk

e Zero Tolerance
- offenders punished ruthlessly

 Please see academic integrity statement:
- https://ue.ucsc.edu/academic-misconduct.html

https://ue.ucsc.edu/academic-misconduct.html

